
virtana.com © Virtana. All Rights Reserved

White paper

Intelligent Observability for Modern
Applications
Real-Time, Context-Aware Insights Without the Bloat

virtana.com | White paper

22

Prologue

An explosive increase in the use of microservice applications and Kubernetes platforms continues year over year. A
re-emerging growth in Cloud/Datacenter-hybrid architectures and the continued adoption of open-source monitoring
tools like OpenTelemetry (OTel), are redefining the Application, Infrastructure, and Observability landscapes. Having
built Virtana’s Container Observability Platform for Kubernetes applications running in the cloud, data centers, and
beyond, we’ve decided to share our container observability “manifesto.” We’ve built our platform by leveraging
experience and lessons from the field as the adoption of Virtana’s Container Observability continues to grow. Virtana
acts as a Smart Layer that enhances the detection, causal, and analytical capabilities of the open-source telemetry
layer.

Modern Cloud Applications are Fundamentally Different

It is well-established that the adoption of cloud computing is continuing at a significant pace. In a recent press release,
a Gartner analyst said, “Cloud use cases continue to expand with increasing focus on distributed, hybrid, cloud-native,
and multicloud environments supported by a cross-cloud framework, making the public cloud services market achieve
a 21.5% growth in 2025.” This rapid growth underscores the need for deeper visibility into increasingly complex,
containerized environments that span multiple cloud platforms.

Driven by the need for scalable, agile and rapid deployements, most new applications are cloud native and built as
microservices. According to the Cloud Native Computing Foundation (CNCF), approximately 90% of all organizations
report using containers in production environments.

Interestingly, while cloud-native architectures fundamentally changed how applications are written and deployed,
the challenges in the observability of modern applications mirror those of legacy monolithic applications in terms of
detecting performance-related concerns:
• How to detect a condition that may impact a customer-facing service?
• Is the alert from an incident benign or a false positive?
• Does the alert indicate whether end users are being negatively affected or not?
• How to ensure that teams are fixing the root cause and not just the alert symptoms so that they do not face the

same problems again?

It is, therefore, worth exploring why the observability challenges continue to increase.

Figure #1: Microservices versus monolithic application architecture (ref: BMC)

https://www.gartner.com/en/newsroom/press-releases/2024-11-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-total-723-billion-dollars-in-2025
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.bmc.com/blogs/microservices-architecture/

virtana.com | White paper

33

Why Are Modern Applications More Challenging to Troubleshoot?

What is different in the case of microservice applications is that it is harder to answer the previous questions given:
• Complexity Caused by the Sheer Scale and Multi-tiered Nature of Orchestrated Applications: obfuscation is

present within microservice applications since they are more than two-dimensional service maps. They are built
on containers, provisioned on an orchestration layer, i.e., Kubernetes, which is built on top of a cloud or on-premise
infrastructure layer. There are multiple points of performance loss: an incident in the application, in the container,
in the orchestration layer, or the infrastructure services can have an impact on multiple services that are masked
by these layers of obfuscation.

• Dependencies Spread Across Services and Down to Infrastructure: as with many distributed systems that share
infrastructure services, especially a network of services, there are many points of failure in the microservices
application. Even before a failure is manifestly obvious, the distributed nature of modern applications means
that they could be operating in a partially degraded mode with only certain, hard-to-detect components failing.
Third-party SaaS and 3rd party APIs add to the complexity, heterogeneity, and difficulty in pinpointing failures of
services.

• Dynamism: Applications are ephemeral, with frequent code pushes and daily releases constantly changing
topologies and service structures. These shifts, combined with transient workloads, introduce challenges in
understanding where issues occur and when they occur.

Existing Approaches Don’t Address Today’s Challenges

Figure #2: Organizations get lost on one or both of the illustrated roads above

Naturally, many organizations head down the path of applying traditional monitoring tools to these new modern
application environments. Unfortunately, the old ways of monitoring are no longer enough! Disjointed, isolated
monitoring of discrete aspects of the application down to the infrastructure means that while there is a lot of data,
there is poor insight into the application state, resulting in mostly manual processes that reduce the time to resolve
problems. Further, the vendors providing this visibility rely on proprietary “agents” to be deployed on every host and
often insist that all the raw telemetry is stored in their own backend. That’s an expensive and unnecessary model for
these newer environments.

In stark contrast to proprietary agents, the Observability world has been increasingly adopting the ecosystem of the
Cloud Native Computing Foundation (CNCF) observability projects, including OpenTelemetry, Prometheus, Loki, and
FluentD, alongside other modern, open-source projects.

virtana.com | White paper

44

While these increasingly popular projects and tools are quickly becoming the data collection standard, they are only
a starting point. Just having telemetry data is not enough. We need to do something with that data. With a rich
data set as a starting point, you can perform telemetry unification, topology and relationship understanding, anomaly
detection, and problem remediation. Unfortunately, we’ve found that when using other platforms, more data usually
means more dashboards, more dashboards, and more dashboards, adding to the “cognitive overload” of already
overloaded engineers. This forces those same engineers to switch between different tools and manually run through
visual queries, looking for patterns that may not be applicable, or looking for a problem they know is there but are not
sure how to find.

The conventional wisdom is to implement the “three pillars of observability,” comprised of logs, metrics, and traces.
While this is a good start, metrics, logs, and traces are no longer enough to detect and resolve problem scenarios.
When you have just this data, especially if it’s disjointed, it is difficult to remediate issues while switching between
telemetry context while and keeping a mental model of the problem and affected entities. This means that Mean Time
to Resolution (MTTR) is negatively affected, translating to longer, unresolved outages.

““
Engineers in every

organization need to be
aware of the changing

topology, dependencies,
and configuration of the

provisioned infrastructure! Let us start with how we get to the first step – the data needed for
real-time visibility into the application.

“
“

While, again, this is
a good start, metrics,
logs, and traces are
no longer enough to
detect and resolve
problem scenarios.

Given the ephemeral nature of modern environments brought about
by the use of advanced virtualization platforms and advanced
container platforms like Kubernetes, a new challenge is the now
ever-changing application structure. We now need to check if newly
added services or previously existing ones removed have caused a
negative performance or behavioral change in the application. Also,
the configuration of the underlying Kubernetes infrastructure, which
itself is constantly changing, can often cause problems. Engineers
in every organization need to be aware of the changing topology,
dependencies, and configuration of the provisioned infrastructure!

A note on distributed tracing: while distributed tracing data is
incredibly valuable in diagnosing performance problems, heavy or
exclusive reliance on this telemetry type forces the Dev and Ops
teams to operate primarily in a reactionary, post-facto mode. What
is needed is an integrated approach to telemetry and problem
detection, where problems are detected in real time using not
only traces, but metrics, logs, events, configuration changes, and
relationship data. This data-complete approach is more capable
of showing what is happening within and across the application
without adding dashboards for every new metric an organization
enables.

Organizations need intelligence from their observability tools that
can automatically provide the following:
1. Real-time visibility into the ever-morphing application and its

dependencies
2. Detection of problems without guessing and manually tuning

thresholds and
3. A reduction in the manual work to find a root cause

virtana.com | White paper

55

The CNCF infographic above illustrates how the platforms and tools used in the observability landscape have evol-
ved. It highlights how all types of telemetry used for monitoring are now freely available. With extensive, full-fled-
ged support and ongoing development of these tools by the CNCF community, these telemetry tools also provide a
vendor-independent, future-proof observability framework to start the journey.

With that data in hand, what we then need is contextual integration and analyses to provide visibility into the health,
state, and performance of the application and infrastructure.

The Monitoring Data You Need is Freely Available from Open Source!

Open-source Observability projects (source: https://landscape.cncf.io/)

Building Real-time actionable Intelligence on Top of Open-Source Data
Virtana Container Observability is built on open source and cloud provider monitoring, as shown in the figure below.

Figure #3: Open-source observability projects (source: https://landscape.cncf.io/)

Figure #4: Virtana Container Observability’s Smart Layer provides actionable insights into cloud and Kubernetes infrastructure and
workloads

https://landscape.cncf.io/

virtana.com | White paper

66

Virtana Container Observability’s Smart Layer

With Virtana Container Observability, there is no longer a need to deploy proprietary vendor agents or proprietary
code instrumentation. Virtana not only provides a future-proof observability platform but also several other advanta-
ges, including:
• The ability to observe applications running anywhere, be it public cloud, on-premises, or a hybrid of both, and still

be observable with a single platform
• No need for proprietary agents, as Virtana supports OTel and other open-source tools
• Data collection is lightweight and simple to deploy
• Monitored data stays in your control as the application owner and can be used for other purposes beyond obser-

vability, such as capacity planning and scaling decisions
• Cost savings are significant as the stored telemetry can utilize low-cost cloud storage (e.g., AWS S3) as opposed

to the vendors’ monitoring services
• Immediate, out-of-the-box operationalization of telemetry data, meaning time to value is measured in minutes,

not days or weeks
• Flexible deployment options, including SaaS, Self-Managed, and fully air-gapped

With access to all the open-source and OTel telemetry data, Virtana Container Observability can now work on
embedding, analyzing, and unifying, i.e., contextually “stitching together” all that telemetry to extract and provide
deep insights. With Virtana, you can:

• Auto-discover all full-stack dependencies - between services and from services down to Kubernetes and the
underlying infrastructure

• Provide a single UI into different facets of the application from telemetry, performance, configuration, and chan-
ges

• Expose dependencies in the application in real-time through eBPF Flow and Trace Analytics
• Deliver predictive anomaly detection without requiring manual Dev or Ops intervention
• Automate causal analysis to isolate problem impact domain and root cause

To improve the efficacy of analysis in each stage, Virtana embeds and uses AI, ML, and curated knowledge against
the observed technology stack, known applications, and IT diagnostics processes.

Here is a summary of the capabilities in each stage.

Figure #5: Virtana’s Smart Layer processes data for correlation, enrichment, dependency mapping, and problem detection alongside root cause
and remediation

virtana.com | White paper

77

Stage 1 – Automated Discovery and Contextual Integration

Virtana’s Container Observability unifies the telemetry data (metrics, logs, traces, flows, etc.) in a distributed object
model representing the microservice application as a dynamic, distributed system. This enables the representation
of application services of diverse types, whether microservice, SaaS, serverless, or FaaS. Because services can be
auto-scaled and work with application components that are ephemeral in nature, Virtana continuously discovers en-
tities, so services that are added or removed, along with infrastructure that is added or removed, are always accoun-
ted for and kept up to date in the relationship and topology data.

This enables contextually associating all aspects of the topology of a workload, allowing users to:
• Quickly navigate to an object (e.g., a VM or a Kubernetes pod) and see all the associated metrics, logs, events,

connections, and traces of that entity without needing to maintain mental topology mappings or maintain mental
context

• Automatically see changes in the topology even as services are modified, whether through auto-scaling, service
additions, deletions, or something like a container image change

• See configuration and deployment details of all objects in the Kubernetes estate directly from the UI without
requiring users to run kubectl commands, allowing SREs who are not Kubernetes experts to easily explore the
correctness of the deployment

Figure #6: Automated contextual linking of metrics, logs, events, connections, and traces of an application container

virtana.com | White paper

88

• Application topology and all dependencies using eBPF network flow
data (see Stage 3 Flow Analytics) without the need for enabling tracing
or using proprietary agents (NOTE: we love and fully support distributed
tracing in our platform, we just don’t require it for toplogy!)

• Different views of the complete application structure, presented at the
application level (Topology), Kubernetes node level (Node Map), VM and
process level (Host Map), and trace level (Trace Map)

• Insights into the golden signals, service interactions, and service-level
performance in real-time using flow analytics

Furthermore, because there is no need to embed any proprietary agents into
the application pods or containers, Virtana can be up and running in minu-
tes.

Stage 2 – Application Topology and Dependencies

Figure #7: An application level view (App Map) showing dependency from container to infrastructure (‘three-layer view’)

““
There is no need to embed

any proprietary agents
into the application pods

or containers, Virtana can
be deployed and up and

running in minutes.

Once all telemetry is processed and contextually mapped, Virtana Container Observability is unique in creating:

Stage 3 – Flow and Trace Analytics

There are two approaches that Virtana Container Observability uses for discovering the interactions and dependen-
cies between components of the environment.

Flow Analytics: when code instrumentation is not available or possible
• eBPF, an Operating System technology, is used to discover the connections and the traffic between elements of

the application.
• These network connections are mapped and wired up to generate the topology and provide the golden signals at

an aggregate level between services without any change to the application code.

virtana.com | White paper

99

• Within a few minutes of installation, the graph of all connected components is created and maintained in real
time. Examples of connections captured are those between containers, between a load balancer and a container,
or between a container and a cloud service such as a cloud database.

Distributed Tracing: when application is instrumented for tracing
• When distributed tracing is enabled, it provides highly detailed information on every transaction, down to indivi-

dual lines of code, with logs contextually linked to transactions.
• Engineers have access to a Virtana patented capability that discovers and differentiates transaction types based

on common or divergent service pathways, called TracePaths.
• TracePaths enable the detection of performance issues in real time at an aggregate level. Teams can then further

drill down to the problem transactions and the services/operations that are the source of the issue.

Figure #8: Transaction flows and contributing services discovered as part of a Virtana’s Trace Paths

Figure #9: TCode-level breakdown of an individual request showing all services and operations with their contribution times and failures

virtana.com | White paper

1010

Stage 4 – Behavioral Profiling and Anomaly Detection

With the increase in the number of microservices and their instances, manual threshold settings have reached the
end of the road. Rather than using single metric thresholds, a more comprehensive approach to anomaly detection is
needed.

Virtana Container Observability continuously learns the behavior of each component in the application estate. Each
entity type (e.g., database, container, Kubernetes node, process, etc.) has a unique behavior that is learned using
curated model templates and an algorithm ensemble.

The behavior of the component is continuously compared to the predicted behavior, and when there is an anomalous
difference, an alert is created.

This model-based approach to anomaly detection improves continuously without user involvement, reducing false
positives and negatives. In field tests on production data, we have shown that this approach reduced false noise
alerts by more than 50% compared to other state-of-the-art, threshold-based approaches over a 6-day period.

Moreover, the problem detection engine provides explanations that are leveraged in automated Root Cause Analysis
(RCA), which helps teams instantly understand the source of the problem.

Stage 5 – Automated Causal Analysis

A key differentiator of Virtana Container Observability is reducing toil and MTTR via automated root cause analysis,
which is triggered by problem detection.

The goal of the automated RCA is to conduct an AI-based diagnostics process which builds on all relevant informa-
tion to the type of problem. Employing a dynamic decision tree process that uses curated knowledge (“SME in a box”)
for issues in application and infrastructure, it leverages information on the current problem, configuration, and events,
as well as learned dependencies and explanations from the behavior model.

By querying conditions relevant to the type of problem, the RCA engine can isolate the causal domain(s) and surface
the relevant information to teams so that they focus only on the entities that are the likely cause of the problem.

Figure #10: Automated, multi-variate problem detection showing multiple triggering causes for an alert

virtana.com | White paper

1111

Stage 6 – Recommended Action

As environments grow larger and more heterogeneous than ever, taking the steps required to fix an issue, even after
knowing how to fix it, still requires a large amount of mental load and manual effort. Organizations need to quickly
get environments and applications back to a working state so as to not affect business outcomes, and accelerating
this process using automated actions becomes a key part of reducing outage times and MTTR.

Inside Virtana, once an alert is triggered for a problem entity, a remediation action can be initiated against the
involved entities. Remediation actions can be as simple as a notification to a particular endpoint, such as Slack or
an email address, all the way to complex, multi-step remediation tasks involving customized scripts and conditional
checks. The platform can execute in a fully autonomous fashion or require manual approval for each action to be
executed so that all steps in the process can be carefully vetted.

For example, in the case of a container suddenly experiencing continuous memory spikes that in turn are causing
OOM (Out of Memory) Kills, an automatic remediation action to increase the memory limits on the container’s deploy-
ment can be triggered. The planned action can then be sent to the appropriate human operators to either approve or
deny the change, followed by fully automated action if approved, all leveraging the Virtana Container Observability
platform.

Figure #11: Virtana’s Root Cause Analysis engine showing the root cause of a failure

Figure #12: The dependency and relationship mapping helps identify problematic request paths

virtana.com | White paper

1212

Figure #13: Restarting a VM with runaway memory utilization.

Virtana Container Observability in Action

The following pages show some example problems, how they are sub-optimally addressed in legacy solutions, and
how they are solved in Virtana Container Observability.

Use-Case 1: Response Time Violation
SCENARIO
• Service Response Time (SLO) Violating by over 10x

VIRTANA CONTAINER OBSERVABILITY APPROACH
• Automatically find problematic service paths
• Analyze and correlate contributing anomalies

LEGACY APPROACH
• Isolated, manually created Response Time SLO violation alert
• Will not surface root cause
• Users must navigate screens and tools and mentally hold context

WHY THE VIRTANA APPROACH MATTERS
• Reduce dependence on experts, tribal knowledge
• Reduced MTTR and reliance on war-rooms
• Automatd problem and telemetry correlation

virtana.com | White paper

1313

Use-Case 2: Bad Image Name
SCENARIO
• Workload Not Starting and Unavailable

VIRTANA CONTAINER OBSERVABILITY APPROACH
• Correlate deployment state with K8s events
• Highlight Invalid Image Tag as failure point
• Immediate, automated Root Cause

LEGACY APPROACH
• Isolated event showing failed deployment
• Manual alert creation IF a subject matter expert thinks to create it
• No correlation

WHY THE VIRTANA APPROACH MATTERS
• Reduced outage time and MTTR
• Reduce reliance on senior subject matter experts being pulled in from multiple domains

Figure #14: Automated detection of slow response times and identification of the offending service

Figure #15: Virtana’s Root Cause Analysis engine showing the root cause of failed container startup

virtana.com | White paper

1414

Use-Case 3: Eviction Due to Node Disk Pressure and High Utilization
SCENARIO
• Service Unavailable

VIRTANA CONTAINER OBSERVABILITY APPROACH
• Correlate deployment state with K8s events, including evicted Pods
• Highlight Node has high disk utilization and disk pressure
• Immediate Root Cause

LEGACY APPROACH
• Isolated Event showing failed deployment
• No correlation

WHY THE VIRTANA APPROACH MATTERS
• Reduced outage time and MTTR
• Reduce reliance on senior SMEs

The Result: More Productive SRE/DevOps teams, Higher Availability, Lower Cost

Higher Availability and Better Performing Digital Services

The relationship between application performance, customer satisfaction, and, ultimately, revenue has been proven
in many industries. Virtana helps customers identify performance degradations before users notice and solve them
more rapidly. This means fast recovery time, less downtime, and a direct, positive impact on the business’s bottom
line.

Up to 66% reduction in monitoring tool costs

Organizations are spending increasingly excessive amounts on legacy monitoring tools to perform basic functions.
These costs are compounded when vendors store all the telemetry data in their cloud. Virtana Container Observabi-
lity embeds the increasingly popular open-source monitoring tools as part of its foundation, allowing you to eliminate
legacy, proprietary, and costly tools that may be in use in your modern environment.

50% improvement in SRE productivity

Virtana Container Observability can get organizations on the path to supporting more applications at higher release
velocity with existing staff. Organizations have improved their SRE / Dev ratios by as much as 50%.

Figure #16: Virtana’s Root Cause Analysis engine showing the root cause of pod evictions in a Kubernetes cluster

virtana.com | Solution Brief

15

virtana.com | Solution Brief

15

©2025 Virtana. All rights reserved. Virtana is a trademark or registered trademark in the United States and/or in other
countries. All other trademarks and trade names are the property of their respective holders. [0625-03]

 +1-408-579-4000 | info@virtana.com | virtana.com

About Virtana

Virtana is the deepest and broadest observability platform for hybrid infrastructure. The AI-powered Virtana Platform
delivers a unified view across applications, services, and underlying infrastructure, correlating user impact, service
dependencies, performance bottlenecks, and cost drivers in real time. Trusted by Global 2000 enterprises, Virtana helps
IT, operations, and platform teams improve efficiency, reduce risk, and make faster, AI-driven decisions across complex,
dynamic environments.

Sources

Gartner Press Release

CNCF Annual Survey

CNCF Image

BMC Blog Image

40% more alerts handled by L1.

Because Virtana Container Observability alerts are highly enriched and prescriptive, it means fewer need to be esca-
lated to expensive L2/L3 resources for resolution.

20% fewer cloud resources.

A lack of performance understanding leads to oversized and underutilized sized instances and Pods inside Kuberne-
tes. Virtana Container Observability enables organizations to make adjustments use as much as 20% fewer resources
without impacting performance or risk while to reducing spend on oversized workloads

Don’t Take Just our Word for It

What customers and thought leaders are saying:

“In complex microservice architectures it can often be hard for engineering teams to see the big picture; Virtana pro-
vides us an affordable, engaging, and approachable view that allows engineers to see how their microservices fit into
the entire stack. Most importantly, because Virtana is building on our existing open source monitoring stack, deploying
it was simple and required no changes to our running services.”
– Director, DevOps Engineering, Global Car Rental Company

“Virtana is a modern and novel approach for integrating information from both CNCF telemetry/observability projects
and Kubernetes to help visualize the environment and automate production troubleshooting.”
– Founding infrastructure engineer, Prometheus.io

[Virtana] is cool because it natively uses ML profiling & open telemetry to rapidly identify performance issues in mo-
dern applications.”

– Cool Vendors in Observability and Monitoring for Logging and Containers, Published 27 April 2022

https://www.linkedin.com/company/virtanacorps
https://www.youtube.com/c/Virtana
https://X.com/VirtanaCorp
https://X.com/VirtanaCorp
https://www.gartner.com/en/newsroom/press-releases/2024-11-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-total-723-billion-dollars-in-2025
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://landscape.cncf.io/
https://www.bmc.com/blogs/microservices-architecture/

